
1 

 

Flow resistance of inertial debris flows 1 

Diego Berzi
1
 and Enrico Larcan

2
 2 

1 Assistant professor, Dept. of Environmental, Hydraulic, Infrastructure, and Surveying Engineering, Politecnico di 3 

Milano, Milan, 20133, Italy. Email: diego.berzi@polimi.it 4 

1 Full professor, Dept. of Environmental, Hydraulic, Infrastructure, and Surveying Engineering, Politecnico di Milano, 5 

Milan, 20133, Italy. Email: enrico.larcan@polimi.it  6 

 7 

Abstract 8 

This work deals with the evaluation of the most suitable expression for the motion resistance of a 9 

debris flow. In particular, we focus on inertial debris flows, i.e., granular-fluid mixtures in which 10 

the particle inertia dominates both the fluid viscous force and turbulence; we provide, through an 11 

order of magnitude analysis, the criterion to be satisfied for a debris flow to be considered inertial 12 

and we show that most of real scale debris flows match this description. We then use the analytical 13 

relation between flow depth, depth-averaged velocity and tangent of the angle of inclination of the 14 

free surface recently obtained by Berzi and Jenkins in steady, uniform flow conditions to 15 

approximate the flow resistance in depth-averaged mathematical models of debris flows. We test 16 

that resistance formula against experimental results on the longitudinal profile of steady, fully 17 

saturated waves of water and gravel over both rigid and erodible beds, and against field 18 

measurements of real events. The notable agreement, especially in comparison with the results 19 

obtained using other resistance formulas for debris flows proposed in the literature, assesses the 20 

validity of the theory. 21 
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Introduction 23 

Two-phase, depth-averaged mathematical models seem to be a useful tool to predict the propagation 24 

of a debris flow (Iverson 1997; Pitman and Le 2005), here defined as a dense (i.e., high 25 

concentrated) mixture of water and solid particles, driven down a slope by gravity. In this context, 26 

two different expressions for the depth-averaged resistances of the fluid and the particles should be 27 

provided. Also, the depth-averaged mathematical models should allow for the fluid and particle 28 

depths being different, as experimentally shown by Armanini et al. (2005) and Iverson et al. (2010). 29 

Different physical mechanisms contribute to the development of shear stresses, and therefore flow 30 

resistance, in particle-fluid mixtures: the fluid viscous force, the fluid turbulence, the inter-particle 31 

collisions and frictional contacts. The latter two are dominant in what we call „inertial debris flows‟, 32 

which are the focus of the present paper. This is a wider definition with respect to the inertial 33 

regime described by Bagnold (1954), where only the inter-particle collisions were taken into 34 

account. On the other hand, we call „mudflows‟ the debris flows dominated by the fluid viscous 35 

force. The fluid turbulence is negligible in the case of debris flows, because of the high particle 36 

concentration. 37 

Recently, Berzi and Jenkins (2008a,b, 2009) have developed a two-phase theory to analytically 38 

describe the behavior of debris flows in steady, uniform and non-uniform flow conditions, when the 39 

degree of saturation (ratio of fluid to particle depth) is allowed to differ from unity; they 40 

successfully compared their analytical results with the experiments performed by Armanini et al. 41 

(2005) and Tubino and Lanzoni (1993) on the flows of water and different types of granular 42 

material (plastic cylinders, glass spheres and gravel). In particular, Berzi and Jenkins (2009) 43 

provided the expressions, further simplified by Berzi et al. (2010), for the resistance formulas of the 44 

two phases (fluid and particles), to be used in depth-averaged mathematical models. 45 

Here, we provide a rational criterion, through an order of magnitude analysis, to define the 46 

aforementioned inertial debris flows. The order of magnitude analysis provides further justification 47 
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of the assumptions made by Berzi and Jenkins in developing their theory. Based on the description 48 

provided by Iverson (1997), we also show that most of real scale debris flows can actually be 49 

considered inertial. For sake of simplicity, we limit the analysis to fully saturated debris flows, i.e., 50 

flows for which the particle and fluid depths above the either rigid or erodible bed (Armanini et al. 51 

2005) coincide. The order of magnitude analysis, though, holds in general for nearly saturated 52 

debris flows, i.e., flows for which the fluid and particle depths are slightly different. Limiting the 53 

analysis to fully saturated debris flows permits to compare the resistance formula obtained from the 54 

theory of Berzi and Jenkins with previous single-phase expressions suggested in the literature. 55 

Indeed, despite the rather trivial consideration that the expression of the flow resistance is crucial in 56 

mathematically modeling debris flows, a relatively small effort has been devoted to actually 57 

evaluate the reliability of the available resistance formulas. The few works on the topic (Hungr 58 

1995; Naef et al. 2006) investigated the influence of the resistance formulas on problems dominated 59 

by acceleration and mass exchange phenomena, sometimes making use of real debris flow events as 60 

test cases. We claim, on the contrary, that a minimum requirement for a resistance formula is to 61 

predict the relation between flow depth, depth-averaged flow velocity and angle of inclination of 62 

the free surface observed in a well controlled environment, such as a laboratory, on simple flow 63 

configurations, such as steady, uniform, or non-uniform, flows. 64 

The paper is organized as follows. In Section 2, we briefly summarize the governing equations for 65 

steady, uniform, and fully saturated debris flows and perform the order of magnitude analysis to 66 

identify inertial debris flows and support the theory of Berzi and Jenkins (2008a,b, 2009). Then, in 67 

Section 3, we introduce and discuss the most popular resistance formulas so far adopted in 68 

mathematical models of debris flows, and we test their capability to predict the longitudinal profile 69 

of steady, fully saturated waves of water and gravel over either rigid or erodible beds, 70 

experimentally measured by Iverson et al. (2010) and Tubino and Lanzoni (1993). For 71 

completeness, we also show comparisons between the predictions of the theory of Berzi and Jenkins 72 

and field measurements on inertial debris flows. Finally, we draw some conclusions in Section 4. 73 
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Theory 74 

Governing equations 75 

We let  denote the fluid mass density, c the particle concentration, g the gravitational acceleration, 76 

 the ratio of particle to fluid density, d the particle diameter,  the fluid viscosity, U the fluid 77 

velocity, and u the particle velocity. The particle Reynolds number  
1/ 2

R /d gd    is defined in 78 

terms of these. In what follows, all quantities are made dimensionless using the particle diameter, 79 

the mass density of the particle material, , and the gravitational acceleration. We take z = h to be 80 

the free surface, and z = 0 to be the position of the bed of inclination , parallel to the free surface. 81 

The flow configuration is depicted in Fig.1a. 82 

In Table 1, we summarize the momentum balances and the constitutive relations reported by Berzi 83 

and Jenkins (2009) for the steady, uniform flow of fluid and particles over a bed, in presence of 84 

lateral confinement; s, p, S and D are the particle shear stress, the particle effective pressure (total 85 

particle pressure minus pore pressure), the fluid shear stress and the drag exerted by the fluid on the 86 

particles, respectively. There, and in what follows, a prime indicates a derivative with respect to z. 87 

The additional force exerted on the particles by the vertical sidewalls, separated by a gap of width 88 

W, is taken into account on average through their coefficient of sliding friction, w (Berzi and 89 

Jenkins 2008a, b). 90 

The expression for the drag is that suggested by Jenkins and Hanes (1998), where U u   , and 3T 91 

is the mean square of the particle velocity fluctuations, T being the granular temperature. 92 

The adopted particle rheology is a linearization of the phenomenological rheology suggested by the 93 

French group G.D.R. MiDi (2004), with the particle stress ratio, s/p, that depends only on the so 94 

called inertial number,  
1/ 2

/ /I u p c . In the linear particle rheology reported on Table 1,  is a 95 

material coefficient of order unity and   is the tangent of the angle of repose of the dry granular 96 

material in absence of lateral confinement (Berzi et al. 2010). The linear particle rheology is 97 
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supposed to be valid at high particle concentrations (da Cruz et al. 2005). Actually, Jenkins (2007), 98 

Jenkins and Berzi (2010) and Berzi and Jenkins (2011) showed that the phenomenological rheology 99 

of the G.D.R. MiDi (2004) applies only in a region a few diameters far from the boundaries (i.e., the 100 

free surface and the bed, in the present case), and provided the particle rheology in this core region 101 

using a more fundamental approach based on kinetic theories of dense granular gases (Jenkins and 102 

Savage 1983; Goldhirsch 2003; Jenkins 2006). The particle rheology of Table 1 applies, therefore, 103 

to thick debris flows (particle depth greater than, say, ten diameters) characterized by a relatively 104 

narrow range of particle stress ratios. Berzi and Jenkins (2009) showed that that narrow range of s/p 105 

corresponds, though, to a range of angles of inclination of the bed typical of both laboratory and 106 

real scale debris flows; they also showed that the corresponding values of the particle concentration 107 

are in the range 0.5 to 0.6, indicating that the flow is dense. This justifies the fact that c is taken 108 

constant in the expressions of Table 1. 109 

Finally, a mixing length approach is used to express the turbulent fluid shear stress in Table 1. Berzi 110 

and Jenkins (2009) took into account the possibility that either a large-scale (with the mixing length, 111 

l, proportional to h) or a small-scale turbulence (with l of the order of the mean distance between 112 

the particles) develops in the region where both fluid and particles are present. According to many 113 

authors (Bagnold 1954; Derksen 2008), though, the presence of the particles at high concentration 114 

suppresses the large-scale turbulence. Thus, we take l to be roughly one tenth of a particle diameter. 115 

Berzi and Jenkins (2009) used, as boundary conditions, the vanishing of the particle and fluid 116 

stresses at the free surface. At the bed, instead, boundary conditions for the particle and fluid 117 

velocity are required. For the latter, the no-slip condition seems to apply; previous works have 118 

instead shown that the particles slip at a rigid bed (Richman 1988; Jenkins 2001), at least in absence 119 

of interstitial fluid, with: 120 

 

1/ 2

0 0
0

0 0

s p
u

p c

 
  

 
. (1) 121 
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In Eq. (1), the sub-index indicates the location z at which a quantity is evaluated. In the case of 122 

erodible bed, instead, the no-slip condition applies also to the particles (Berzi and Jenkins 2008a,b). 123 

 124 

Order of magnitude analysis 125 

As already mentioned, the linear particle rheology applies to thick and dense granular flows; i.e., 126 

flows characterized by h much greater than one and c of order unity; the particle specific mass and 127 

the tangent of the angle of inclination of the bed are both of order unity. 128 

Given that the coordinate z is of order h, the particle momentum balance along z (Table 1) shows 129 

that p is of order h. The inertial number I is of order 10
-1

, according to physical and numerical 130 

experiments on simple shear flow of dry granular material (G.D.R. MiDi 2004) and recent theory 131 

(Berzi et al. 2011), at least when the particle stress ratio is not close to the yielding value  . Hence, 132 

from the definition of I, the shear rate u' is of order 10
-1

h
1/2

. This implies that u is of order 10
-1

h
3/2

, 133 

also known as the Bagnold scaling (Mitarai and Nakanishi 2005); obviously, also the depth-134 

averaged particle velocity, um, is of order 10
-1

h
3/2

. 135 

The granular temperature T scales with p (Jenkins 2007) and therefore is of order h. We now 136 

assume that the non-linear part of the drag coefficient in the expression of the drag force (Table 1) 137 

is entirely due to the particle velocity fluctuations, i.e.,  is negligible with respect to T
1/2

. This 138 

implies that  is much less than h
1/2

 and, therefore, also much less than u. With this, the fluid and 139 

particle velocities would be approximately identical (single-phase approximation), and u'  U', as 140 

assumed by Berzi and Jenkins (2008a,b, 2009); then, U is of order 10
-1

h
3/2

. The constitutive 141 

expression for the fluid turbulent shear stress of Table 1 gives, therefore, that S is of order 10
-4

h, 142 

with l of order 10
-1

. Thus, S' is of order 10
-4

 and can be neglected with respect to the component of 143 

the fluid weight along x (first term on the right hand side of the fluid momentum balance in 144 

Table 1), which is of order unity; hence, the fluid momentum balance reduces to a balance between 145 

the component of the fluid weight in the flow direction and the drag (with the fluid turbulence 146 
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having no influence on the flow). The drag must therefore be of order unity. The expression of the 147 

drag in Table 1 can then be used to obtain that  is of order h
-1/2

, which is consistent with our initial 148 

guess on . If the depth h is not much greater than one, or if the inertial number is much smaller 149 

than one, i.e., if the particle stress ratio is close to  ,  cannot be neglected with respect to u and the 150 

single-phase approximation no longer holds. The former can be the case for some laboratory debris 151 

flows, as shown in Berzi and Jenkins (2008a, b), while the latter is certainly the case at the onset 152 

and arrest of debris flows, whose modeling therefore require a full two-phase approach. 153 

Eq. (1) shows also that u0 is of order h
1/2

 for flows over rigid beds, hence negligible with respect to 154 

um when h is much greater than one, given that the particle stress ratio, s/p, is of order unity (G.D.R. 155 

MiDi 2004; Jop et al. 2005; Mitarai and Nakanishi 2007). 156 

The conditions for the validity of the linear particle rheology (thick flow and high concentration) 157 

permit therefore to ignore the difference in velocity between the fluid and the particles, at least far 158 

from the onset and the arrest, the particle slip velocity at the rigid bed and the turbulent fluid shear 159 

stress, as in Berzi et al. (2010). 160 

Actually, the use of the linear particle rheology (Table 1) has not been justified, yet. That rheology 161 

holds for dense and dry granular flows. The interstitial fluid affects the particle interactions at the 162 

micro-mechanical level in a significant way if the Stokes number, 1/ 2St R / 9T  , for the particles 163 

is small (Joseph et al. 2001; Courrech du Pont et al. 2003; Berzi 2011). Hence, given that we have 164 

shown that T
1/2

 is of order h
1/2

, the influence of the interstitial fluid on the particle interactions can 165 

actually be ignored, and the debris flow can be defined inertial, if St10
-1

Rh
1/2

 is much greater than 166 

one, i.e., if R is much greater than 10h
-1/2

. The typical flow depths of real scale debris flows are of 167 

order one meter (Iverson 1997); with this, and using the definition of the Reynolds number, and the 168 

values of density and viscosity appropriated for water, the aforementioned condition would imply d 169 

much greater than 10
-3

 mm. It is worth mentioning that d = 0.1 mm is the silt-sand boundary 170 

(Iverson 1997). 171 
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According to Iverson (1997), 90% of particles in debris flows is composed of sand, gravel or larger 172 

grains; the remaining 10% is composed of finer components, whose main effect is increasing the 173 

apparent density and viscosity of the interstitial fluid, without changing though the order of 174 

magnitude of  and  that we have employed in the present analysis (using the expressions reported 175 

by Iverson,  and  would be about 1.2 and 1.4 times the corresponding values for clear water, 176 

respectively). Hence, most of real scale debris flows are inertial and the theoretical solution to 177 

steady, uniform flows reported by Berzi et al. (2010) applies to them. 178 

We now derive, using the above analysis and the expressions of Table 1, the theoretical solution for 179 

steady and uniform, fully saturated, inertial debris flows over rigid beds confined between vertical 180 

sidewalls. With c approximately constant in the momentum balances of Table 1, the total shear 181 

stress of the mixture and the particle pressure read 182 

    
1

sin wc c
s S h z p h z

W

  
     


, (2) 183 

and 184 

 
 

 
1

cos
c

p h z


  


, (3) 185 

respectively. Given that the fluid turbulent shear stress is negligible in Eq. (2), the particle stress 186 

ratio results linearly distributed, 187 

 
 

 
 

1 1
tan

1

w
cs

h z
p c W

   
   

 
. (4) 188 

From the particle rheology of Table 1, also the inertial number is linearly distributed in the flow, 189 

 
 

 
 

1 11
tan

1

w
c

I h z
c W

    
     
   

. (5) 190 

Using the definition of the inertial number and the particle pressure distribution (Eq. 3), we obtain, 191 

 
 

 
 

 
 

1/ 2

1/ 21 1 1 cos1
tan

1

w
c

u h z h z
c W

       
         

     
. (6) 192 
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Eq. (6) can easily be integrated to obtain the velocity distribution along z, using the no-slip 193 

boundary condition at the rigid bed (in accordance with the order of magnitude analysis), 194 

 

 

 

 
 

 
 

1/ 2

3/ 23/ 2

1/ 2

5 / 25 / 2

1 1 1 cos2 1
tan

3 1

1 cos2 1
.

5

w

c
u h h z

c

h h z
W

       
               

            

 (7) 195 

Finally, integrating Eq. (7) between 0 and h allows to obtain the depth-averaged particle velocity, in 196 

the case of mild slopes ( cos 1  ), 197 

 
 

 

   
1/ 2 1/ 2

3/ 2 5 / 2
1 1 1 cos 1 cos2 1 2 1

tan
5 1 7

w
m

c
u h h

c W

            
        

         
. (8) 198 

Eq. (8) can be inverted to obtain an expression for the so called friction slope, j, that, in uniform 199 

flow conditions, equals tan : 200 

 
 

 

 

 

 
1/ 2 1/ 2

3/ 2 1/ 2

11 15 2 1

1 1 2 1 1 7

m w
cc u

j h
c c h W

            
        

. (9) 201 

It is customary to use the expression of the friction slope obtained in uniform flow conditions to 202 

approximate the flow resistance in depth-averaged mathematical models of non-uniform flows 203 

(Chow 1959). In this sense, Eq. (9) represents the resistance formula for saturated debris flows over 204 

rigid beds in presence of lateral confinement obtained from the theory of Berzi and Jenkins 205 

(2008a,b, 2009). The first term on the right hand side of Eq. (9) represents the minimum slope 206 

(yield) for having a steady, uniform flow; as expected, it increases as the concentration increases. 207 

We can obtain the resistance formula for saturated debris flows over erodible beds confined 208 

between vertical sidewalls by assuming, as in Berzi and Jenkins (2008a), that the particle stress 209 

ratio is at its yielding value at the bed. Eq. (4) therefore provides an additional relation to determine 210 

the flow depth as a function of the slope, 211 

 
 

 

1 1
tan

1

w
c

h
c W

   
   

 
. (10) 212 
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Using Eq. (10) in Eq. (8), and substituting j for tan gives 213 

 
 

 

 

 

1/ 2

3/ 2

11 35

1 1 4 1 1

m
cc u

j
c c h

       
   

. (11) 214 

It is worth noticing that, in saturated flow conditions, the two-phase theory of Berzi and Jenkins 215 

reduces to a single-phase theory (the dimensional analysis has indeed shown that the fluid and the 216 

particle velocity are roughly identical, if the flow is thick). This will allow us to compare Eqs. (9) 217 

and (11) with the widely used, single-phase, resistance formulas mentioned in the next Section. 218 

Test of resistance formulas 219 

Unfortunately, it is quite difficult to make accurate measurements on granular flows, even in a well 220 

controlled environment such as a scientific laboratory. Usually, both the depth and velocity are 221 

optically measured through glassy sidewalls, thus influenced by the latter. Also, the determination 222 

of the depth is easy in the case of flows over rigid beds, while in the case of flows over erodible 223 

beds depends on the location of the bed itself, which is still under debate (Armanini et al. 2005; 224 

Jenkins and Berzi 2010; Berzi et al. 2010). We have shown in the previous section that the debris 225 

flow is not influenced by the boundaries, if the depth is much greater than, say, ten diameters. This 226 

condition is normally achieved in real scale events (Iverson 1997), while all of the available 227 

laboratory experiments on uniform debris flows over rigid beds are characterized by depths of 228 

roughly ten diameters (Armanini et al. 2005; Hotta and Miyamoto 2008). Experiments characterized 229 

by depths of over a hundred diameters are actually reported by Hotta and Miyamoto (2008), but 230 

they can be classified as mudflows (R is of order 10h
-1/2

), not inertial debris flows. Finally, in the 231 

most general case, the depth and velocity of the particles differ from those of the fluid, and they 232 

should be measured separately. 233 

To our knowledge, the only experimental campaign with detailed measurements of particle and 234 

fluid depths and depth-averaged velocities – calculated from the volume flow rates – and angle of 235 
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inclination of the free surface was performed by Armanini et al. (2005) on steady, uniform, debris 236 

flows over erodible beds; some experiments were also performed by Tubino and Lanzoni (1993), 237 

though, in that case, the difference between the fluid and particle depth was not measured. Berzi 238 

and Jenkins (2008a,b, 2009) have shown that their two-phase theory was able to predict in a notable 239 

way the experimental results of both Armanini et al. (2005) and Tubino and Lanzoni (1993). 240 

As already mentioned, a fair test of the performance of the theory of Berzi and Jenkins against other 241 

resistance formulas, based on single-phase approach, should be made using experiments on fully 242 

saturated debris flows. Unfortunately, those experiments are rather scarce. An alternative is to 243 

analyze steady, fully saturated waves translating along inclines at constant velocity (Fig.1b and 1c). 244 

Indeed, the equation describing the shape of a wave moving at constant velocity along a plane is 245 

(Pouliquen 1999b; Berzi and Jenkins 2009): 246 

 
d

tan
d

h
j

x
  . (12) 247 

We need an expression for the friction slope, j,  the boundary condition being the vanishing of h at 248 

a certain position x L  along the bed  to solve Eq. (12). Apart from the steady, uniform flows, 249 

this is therefore the simplest flow configuration that allows to assess the validity of a resistance 250 

formula. 251 

A list of the most popular resistance formulas adopted so far in debris flow models is reported on 252 

Table 2. The Coulomb resistance formula (Savage and Hutter 1989; Iverson 1997; Pitman and Le 253 

2005) is commonly adopted in Earth Science related works; it is based on the assumption that the 254 

granular material slides over an incline as a solid object without internal shearing, with the constant 255 

basal friction angle, , independent on the flow velocity and depth, in contrast with experimental 256 

evidence on both dry granular and debris flows (Pouliquen 1999a; Armanini et al. 2005). The 257 

Takahashi‟s (1991) formula has been quite successful in the Hydraulics literature on debris flows; it 258 

is based on the pioneering work on inertial granular flows of Bagnold (1954), who correctly 259 

described the physical mechanism at the origin of the particle pressure (the particle collisions), but 260 
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was wrong in assuming a Coulomb-like relation between the particle shear stress and pressure, as 261 

clearly proved by recent numerical simulations on simple shear flows (da Cruz et al. 2005). In the 262 

expression reported on Table 2, c
*
 is the concentration at the closest packing, taken to be 0.74 as for 263 

mono-dispersed spheres (Torquato 1995), while a is a parameter that takes into account the nature 264 

of the bed (rigid or erodible). 265 

For completeness, we have also listed in Table 2 some resistance formulas that, although do not 266 

strictly apply to inertial debris flows, have nonetheless been suggested in the literature. As already 267 

mentioned, the resistance formulas based on the assumption that the fluid viscous force dominates 268 

over the particle inertia may apply to mudflows, not to inertial debris flows. Several rheologies have 269 

been proposed (e.g., Newtonian, Bingham, Herschel-Bulkley, Coulomb-viscous; see Naef et al. 270 

2006 for references and a more detailed discussion) to derive those „viscous‟ resistance formulas. In 271 

Table 2, we report only the resistance formula based on the Newtonian laminar rheology, where 272 

 
3/ 2

1/3
* *R R / 1 / 2.25c c  

  
 is a modified particle Reynolds number that takes into account the 273 

influence of the concentration on the fluid viscosity, as suggested by Bagnold (1954). 274 

On the opposite, there are some resistance formulas that emphasize the „turbulent‟ behavior of 275 

debris flows (i.e., the Manning-Strickler and Voellmy formulas reported in Table 2; see, once again, 276 

Naef et al. 2006). We have already stated in the previous section that the fluid turbulence is likely to 277 

be suppressed when the concentration is high; turbulent-like formulas may therefore apply to the 278 

flow of fluid-particle mixture at low-moderate concentration, but, once again, not to inertial debris 279 

flows. In the expressions of Table 2, n and  are the dimensional Manning and Voellmy 280 

coefficients, respectively. In the Voellmy formula, a turbulent-like term is added to a yield term; for 281 

the latter, we adopt the expression derived by Berzi and Jenkins (2008a,b, 2009) (first term on the 282 

right hand side of Eq. 9). 283 

Iverson et al. (2010) reported the aggregated results of 15 experiments, characterized by the same 284 

initial conditions, on debris flows of water and a mixture of gravel and sand over rigid, rough beds 285 
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(Fig.1b) in a rectangular channel of width, W, equal to 200 cm (200 diameters, given that the mean 286 

diameter of the sediments was equal to 1 cm) and constant inclination  equal to 31°, in terms of 287 

wave height as a function of time, t. After an initial acceleration, the velocity of the front of the 288 

wave reached a value of about 10 m/s, i.e., 32mu   in dimensionless units, and remained roughly 289 

constant for the most of the length of the channel. There, the wave is therefore approximately steady 290 

in a frame of reference moving at constant velocity, with x = 32t. Fig.2 shows the comparisons 291 

between the average results of the 15 experiments and those obtained by numerically solving 292 

Eq. (12), with a fourth-order Runge-Kutta method, using the aforementioned six resistance formulas 293 

for j; i.e., Eq. (9) and the five expressions of Table 2. In the latter, we use:  = 2.65, appropriated 294 

for sand and/or gravel in water; 0.5  , the tangent of the angle of repose in a channel of infinite 295 

width, obtained by Forterre and Pouliquen (2003) for dry sand (assuming that sand and gravel have 296 

similar properties); 0.65c  , the average value of the concentration of sand near an erodible bed 297 

measured by Pugh and Wilson (1999); 0.6  , that allows to reproduce the experimental results on 298 

debris flows of water and gravel in uniform flow conditions (Berzi et al. 2010); tan = 0.8, as 299 

suggested by Iverson et al. (2010); a = 0.35, given that the bed is rigid (Takahashi 1991); 300 

n = 0.1 s/m
1/3

, as suggested by Rickenmann (1999);  = 1120 m/s
2
, as suggested by Buser and 301 

Frutiger (1980), analyzing data on snow avalanches. Also, given that the channel width is about 20 302 

times larger than the flow depth, we ignore the additional term due to the presence of sidewalls in 303 

Eq. (9). The particle Reynolds number in the experiments of Iverson et al. (2010) is about 3100 304 

(with 
310 Pa s  ); given that h is of order ten diameters (Fig.2), R is much greater than 10h

-1/2
 305 

and the particle inertia dominates the flow. The roughness of the rigid bed helps to greatly reduce 306 

the slip velocity of the particles, so that the conditions for the validity of the theory of Berzi and 307 

Jenkins are probably satisfied, despite the fact that the flow is not really thick. The agreement 308 

between the experimental and the theoretical wave profile obtained using Eq. (9) is notable in terms 309 

of the maximum height reached by the wave; even more notable, if one keeps in mind that the 310 
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experimental data are characterized by a significant dispersion and that the theory was developed 311 

for a mono-dispersed mixture of particles and water. On the other hand the reproduction of the 312 

shape of the snout is less satisfactory. There the depth is less than ten diameters, so that the 313 

influence of the bottom boundary cannot be neglected: the rough bed acts as a source of energy to 314 

the flow (Richman 1988), and, as already mentioned, the validity of the local granular rheology of 315 

Table 1 is questionable. The use of the Coulomb formula in Eq. (12) leads to a linear profile; hence, 316 

the experimental tendency of the free surface to become parallel to the bed in the upwards direction 317 

cannot be reproduced, and apart from a region close to the snout, the flow depth is largely 318 

overestimated. The Takahashi and the Manning-Strickler formulas strongly overestimate the flow 319 

resistance, and therefore the wave height; the opposite for the Newtonian laminar formula. The 320 

results obtained with the Voellmy formula are the closest to the experiments, apart from those 321 

obtained with Eq. (9). Obviously, we could have improved the agreement between the experiments 322 

and the predictions obtained using the above mentioned empirical formulas, by tuning the 323 

parameters present in the different expressions (except for the Coulomb formula, whose unrealistic 324 

consequences on the wave profile are independent on the choice of tan). The a priori choice of the 325 

parameters in the formulas, though, highlights the superiority of Eq. (9), that does not require an ad 326 

hoc parameter adjustment. 327 

Tubino and Lanzoni (1993) reported measurements of the wave height as a function of time, t, for 328 

one of their experiments on debris flows of water and 3 mm gravel in a rectangular channel of 329 

width, W, equal to 20 cm (67 diameters). For that experiment, they also measured the velocity of the 330 

front, that they described as fully saturated, and found it constant and equal to 47.6 cm/s, i.e., 331 

2.8mu   in dimensionless units; once again, the flow can then be considered steady in a frame of 332 

reference moving at constant velocity, with x = 2.8t. Unlike the experiments of Iverson et al. (2010), 333 

the debris flow propagated over an erodible bed (Fig.1c), whose initial inclination, 0, was equal to 334 

17°; this ensures that a no-slip velocity applies at the interface with the bed, but introduces an 335 
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additional uncertainty in determining the position of the bed itself, represented by b in the sketch of 336 

Fig.1c. The local slope of the bed, tan, in Eq. (12), can be expressed as 337 

 
0

d
tan tan

d

b

x
    , (13) 338 

and an additional equation is required to solve for the evolution of both h and b along x. Eq. (10) 339 

provides this additional relation. 340 

Fig.3a,b show the comparisons between the experimental results of Tubino and Lanzoni (1993) and 341 

those obtained by numerically solving the system of Eqs.(10), (12) and (13), using again a fourth-342 

order Runge-Kutta method, with Eq. (11) and the five resistance formulas of Table 2 for j, and the 343 

boundary conditions h = b = 0 at x = L. We keep the same values for the parameters in the 344 

resistance formulas adopted in the case of Fig.2, but for the parameter a in the Takahashi‟s formula 345 

that, in the case of erodible bed, is supposed to be equal to 0.042 (Takahashi 1991). We take w in 346 

Eq. (10) to be equal to 0.39, as suggested by Berzi et al. (2010). 347 

The particle Reynolds number R is about 500 and therefore much greater than 10h
-1/2

 for the 348 

experiments of Tubino and Lanzoni (1993), given that h is of order ten diameters (Fig.3). The 349 

agreement between the experimental and the theoretical wave profile obtained using the theory of 350 

Berzi and Jenkins (Fig.3a) is remarkable. Also the shape of the snout is well reproduced in this case, 351 

despite the fact that the flow there is thin. This seems to suggest that the local granular rheology of 352 

Table 1 holds also in the proximity of the bottom boundary (erodible bed), if the latter acts as a sink 353 

of energy to the flow (Jenkins and Askari 1991). The use of Eq. (11) results also in an erodible bed 354 

which is substantially unperturbed by the wave propagation (Fig.3a). This is in accordance with the 355 

observations of Tubino and Lanzoni (1993), although they did not report direct measurements of the 356 

position of the bed. None of the other resistance formulas allows to reproduce the experiments; in 357 

particular, the Voellmy formula, that gives good results in the case of the experiments of Iverson et 358 

al. (2010), dramatically underestimates the resistances in this case (Fig.3b). 359 
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A final test of the theory would consist in evaluating its performance with regards to field data. 360 

Rickenmann (1999) compiled data sets of field and laboratory measurements of mean velocity, flow 361 

depth and angle of inclination of the bed from different literature sources. Assuming that the data 362 

refer to roughly uniform flows, i.e., flows for which the bed slope, tan, coincides with the friction 363 

slope, j, they can be used to assess the validity of the theory. In particular, we make comparisons 364 

with Eq. (9) neglecting the term associated with the frictional sidewalls, because the field data refer 365 

to natural channels with expected small ratio of flow depth to channel width. The condition of fully 366 

saturation is rather exceptional, though; as revealed by the experiments of Armanini et al. (2005), 367 

the flow is always over-saturated at mild slopes, i.e., the height of the water is greater than the 368 

height of the particles above the bed. Nonetheless, it can be shown that Eq. (9) is representative of 369 

the resistances also when the flow is over-saturated, if the concentration c is taken to be the bulk 370 

value over the entire flow depth (Berzi et al. 2010). Fig.4 shows the comparison between the field 371 

and laboratory measurements, reported by Rickenmann (1999), for which R is much greater than 372 

10h
-1/2

, and the theoretical predictions of Eq. (9), in terms of the ratio 
3/ 2/mu h  against tan. The 373 

field measurements have been performed on the Torrente Moscardo in Italy (Arattano et al. 1996) 374 

and the Jiangia gully in China (Rickenmann, written comm., 2011); the laboratory measurements 375 

were performed by Wang and Zhang (1990), Garcia Aragon (1996) and Iverson and LaHusen 376 

(1993). The mean diameter of the granular material ranges between 1 mm and 1 cm. Given the 377 

usual values of the bulk concentration for debris flows (Takahashi 1991), we take c equal to 0.2 and 378 

0.6 in Eq. (9) to draw the two theoretical curves of Fig.4. The values of the other parameters in 379 

Eq. (9) are exactly the same used for the comparisons of Fig.2 and 3. Despite all the uncertainties 380 

that characterize the measurements, the most of the field and laboratory measurements are in the 381 

region between the two curves, and the trend of the 
3/ 2/mu h  to increase with the bed slope is 382 

notably reproduced by the theory. 383 
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Conclusions 384 

This work has focused on the resistance formulas to be used in mathematical models of inertial 385 

debris flows, i.e., granular-fluid mixtures for which both the fluid viscous forces and the fluid 386 

turbulence does not substantially affect the particle interactions at the micro-mechanical level. For 387 

simplicity, we have limited the analysis to fully saturated flows, i.e., flows for which the fluid and 388 

particle depths coincide. 389 

The main results of the paper are: (i) the most of real scale debris flows (Iverson 1997) are inertial 390 

debris flows, given that the concentration is higher than 40%, so that the fluid turbulence is 391 

suppressed, and the particle Reynolds number is much greater than ten times the inverse of the 392 

square root of the non-dimensional flow depth, so that the fluid viscous forces are negligible with 393 

respect to the particle inertia; (ii) hence, there is no physical justification to adopt, in depth-394 

averaged mathematical models of inertial debris flows, resistance formulas of either „viscous‟, such 395 

as those based on Newtonian, Bingham or Herschel-Bulkley rheologies, or „turbulent‟ origin, such 396 

as the Manning-Strickler or the Voellmy expression; (iii) the particle slip velocity at a rigid bed, i.e., 397 

the influence of the bottom boundary, can be ignored only if the flow depth is much greater than ten 398 

diameters - this usually applies to real scale events, not to most of the available laboratory 399 

experiments on inertial debris flows; (iv) the physically based resistance formulas obtained from the 400 

theory of Berzi and Jenkins (2008a,b, 2009) allow to reproduce, in a notable way, both the 401 

experimental longitudinal profile of steady waves of water and gravel measured by Iverson et al. 402 

(2010) and Tubino and Lanzoni (1993), and the field measurements of real events reported in the 403 

literature and collected by Rickenmann (1999); (v) neither the Coulomb (Iverson 1997; Pitman and 404 

Le 2005) nor the Takahashi (1991) resistance formula allow to fit the experimental results, raising 405 

some doubts about their implementation in mathematical models of debris flows. 406 
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Notation 409 

The following symbols are used in the paper: 410 

 411 

 a = coefficient in the Takahashi‟s formula [-]; 412 

 c = particle volume concentration [-]; 413 

 c0 = particle volume concentration at a rigid bed [-]; 414 

 c
*
 = particle volume concentration at the closest packing [-]; 415 

 d = particle diameter [m]; 416 

 D = drag force [-]; 417 

 g = gravitational acceleration [m/s
2
]; 418 

 h = particle depth over the bed [-]; 419 

 I = inertial number [-]; 420 

 j = friction slope [-]; 421 

 l = mixing length in the fluid turbulent shear stress [-]; 422 

 L = position of the wave front [-]; 423 

 n  = Manning‟s coefficient [m
1/3

/s]; 424 

 p = particle pressure [-]; 425 

 p0 = particle pressure at a rigid bed [-]; 426 

 R = particle Reynolds number [-]; 427 

 R
*
 = modified particle Reynolds number [-]; 428 

 s = particle shear stress [-]; 429 

 s0 = particle shear stress at a rigid bed [-]; 430 

 S = fluid shear stress [-]; 431 

 St = Stokes number [-]; 432 

 t = time [-]; 433 
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 T = granular temperature [-]; 434 

 u = particle velocity [-]; 435 

 u0 = particle slip velocity at a rigid bed [-]; 436 

 um = depth-averaged particle velocity [-]; 437 

 U = fluid velocity [-]; 438 

 W = channel width [-]; 439 

 x = coordinate in the flow direction [-]; 440 

 z = coordinate in the direction perpendicular to the flow [-]; 441 

  = material coefficient [-]; 442 

  = difference between the fluid and the particle velocity in the flow direction [-]; 443 

  = Coulomb‟s basal friction angle [°]; 444 

  = fluid viscosity [Pas]; 445 

   = yielding value of the particle stress ratio at the bed [-]; 446 

 w = wall friction coefficient [-]; 447 

  = local angle of inclination of the bed [°]; 448 

  = unperturbed angle of inclination of the erodible bed [°]; 449 

  = fluid density [kg/m
3
]; 450 

  = ratio of particle density over fluid density [-]; 451 

  = Voellmy‟s coefficient [m/s
2
]. 452 
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List of figure captions 

 

Figure 1. (a) Steady, uniform, fully saturated debris flow. (b) Steady, non-uniform, fully saturated debris 

flow over a rigid bed. (c) Steady, non-uniform, fully saturated debris flow over an erodible bed. 

 

Figure 2. Experimental (circles, from Iverson et al. 2010) against theoretical (lines) longitudinal profile of a 

steady wave over a rigid bed, obtained by solving Eq. (12) with the different expressions for j: Eq. (9) (solid 

black line); Coulomb (dashed black line); Takahashi (dot-dashed black line); Newtonian laminar (solid gray 

line); Manning-Strickler (dashed gray line); Voellmy (dot-dashed gray line). 

 

Figure 3. (a) Experimental evolution of the free surface (circles, from Tubino and Lanzoni 1993) and 

theoretical evolution of the free surface (black lines) and the erodible bed (gray lines) for a steady wave over 

an erodible bed, obtained using: Eq. (11) (solid lines); Coulomb (dashed lines); Takahashi (dot-dashed lines). 

(b) Same as in Figure 3a, but using: Newtonian laminar (solid lines); Manning-Strickler (dashed lines); 

Voellmy (dot-dashed lines). 

 

Figure 4. Field and laboratory measurements (circles, see the text for the sources) of the ratio 
3/ 2/mu h  

against bed slope for inertial debris flows. Also shown are the predictions of Eq. (9), for c = 0.6 (solid line) 

and c = 0.2 (dashed line). 
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